Izvestiya of Saratov University.

Earth Sciences

ISSN 1819-7663 (Print)
ISSN 2542-1921 (Online)


Full text:
(downloads: 21)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
551.58

Estimation of Characteristics of the Earth’s Climate System from its Response to Changes in Solar Constant

Autors: 
Bogdanov Mikhail Borisovich, Saratov State University
Efremova Tatiana Yurievna, Saratov State University
Katruschenko Aleksey Victorovich, Saratov State University
Abstract: 

Restoration of the impulse response of the Earth's climate system (ECS) showed that the rate of its reaction can be characterized by an equivalent time constant of 1.04±0.17 months. Sensitivity of ECS to changes in radiative forcing is equal to 0.41±0.05 K W-1m2, which gives the positive feedback factor 1.37±0.17. Effective heat capacity of ECS per unit area, which manifests itself in the radiative forcing duration of the order time constant, equal to 6.7±1.9 MJ K-1m-2 and is about 0.64 the heat capacity of the atmosphere. This suggests that the reaction of ECS on the change in radiative forcing at similar time intervals due to the atmospheric processes

Reference: 

1. Climate Change 2007 : The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / eds.

S. Solomon et al. Cambridge, 2007. 996 p.

2. Schwartz S. E. Heat capacity, time constant, and sensitivity of Earth’s climate system // J. Geophys. Res. 2007. Vol. 112. D24S05, doi:10.1029/2007JD008746.

3. Scafetta N .Comment on «Heat capacity, time constant, and sensitivity of Earth’s climate system» by S. E. Schwartz // J. Geophys. Res. 2008. Vol. 113. D15104, doi:10.1029/2007JD009586.

4. Schwartz S. E. Reply to comments / by G. Foster et al., R. Knutti et al., and N. Scafetta on «Heat capacity, time constant, and sensitivity of Earth’s climate system» // J. Geophys. Res. 2008. Vol. 113. D15105, doi:10.1029/2008JD009872.

5. Douglass D. H., Clader B. D., Knox R. S. Climate sensitivity of Earth to solar irradiance: update // Paper presented at 2004 solar radiation and climate (SORCE) meeting on decade variability in the Sun and the climate, Meredith, New Hampshire, 27–29 October 2004. P. 1–16 . URL: http://arxiv.org/abs/physics/0411002 (дата обращения:18.05.2011).

6. Lockwood M. Recent changes in solar outputs and the global mean surface temperature. III. Analysis of contributions to global mean air surface temperature rise // Proc. Royal Soc. A. 2008. Vol. 464. P. 1387–1404.

7. Богданов М. Б., Ефремова Т. Ю., Катрущенко А. В. Исследование реакции земной климатической системы на изменение солнечной постоянной // Погода и климат: новые методы и технологии исследований (к 50-летию организации кафедры метеорологии и охраны атмосферы в Пермском государственном университете). Пермь; 2010. С. 49–52.

8. Кислов А. В. Климат в прошлом, настоящем и будущем. М., 2001. 351 с.

9. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.; 1979. 142 с.

10. Тихонов А. Н., Гончарский А. В., Степанов В. В., Ягола А. Г. Регуляризирующие алгоритмы и априорная информация. М., 1983.200 с.

11. Гончарский А. В., Черепащук А. М., Ягола А. Г. Некорректные задачи астрофизики. М., 1985. 352 с.

12. Frohlich C. Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21 // Space Science Rev. 2006. Vol. 125. P. 53–65.

13. Smith T. M., Reynolds R. W., Peterson T. C., Lawrimore J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006) // J. Climate. 2008. Vol. 21. P. 2283–2296.

14. Монин А. С. Введение в теорию климата. Л., 1982. 246 с.