Changes in the Insolation, Caused by the Planetary Perturbations of the Earth’s Orbit and by Variation in the Solar Constant
With the use of modern numerical methods of celestial mechanics, the incoming irradiance flux to the Earth from the Sun has been calculated under the assumption of the invariability of its luminosity through interval of 1700–2000 A.D. Harmonics of the annual period of the Earth as well as harmonics of the synodic period of Venus, Mars, Jupiter, Saturn and harmonics corresponded to combination frequencies, are clearly visible in the power spectrum of time series of the insolation. The periods of these harmonics are located in the range from 100 days to 15.7 years. The main harmonics in the power spectrum are corresponded to the synodic period of Jupiter 399d.0, and the first harmonic of the synodic period of Venus with period 291d.9. Their amplitudes are approximately equal to 40 mW/m2. The power spectrum of time series of real changes of the insolation during 1978–2005, which was caused by the planetary perturbations and variation in the solar constant, has been also calculated. Influence of planetary harmonics was also observed in this spectrum together with the 11-year cycle of the solar activity.
1. White W.B., Lean J., Cayan D.R., Dettinger M.D. A response of global upper ocean temperature to changing solar irradiance // J. Geophys. Res. 1997. V.102, №C2. Р.3255– 3266.
2. Crowley T.J. Causes of climate change over past 1000 years // Science. 2000. V.289, №5477. Р.270–277.
3. Reid G.C. Solar variability and the Earth’s climate: introduction and overview // Space Science Reviews. 2000. V.94, №1–2. Р.1–11.
4. Douglass D.H., Clader B.D. Climate sensitivity of the Earth to solar irradiance // Geophys. Res. Lett. 2002. V.29, №16. Р.1786–1789.
5. Douglass D.H., Clader B.D., Knox R.S. Climate sensitivity of Earth to solar irradiance: update: Solar Radiation and Climate (SORCE) meeting on Decade Variability in the Sun and the Climate. Meredith, New Hampshire, 27–29 October, 2004. Р.1–16 (http://arxiv.org/abs/physics/0411002).
6. Макарова Е.А., Харитонов А.В., Казачевская Т.В. Поток солнечного излучения. М., 1991. 400 с.
7. Willson R.C., Mordvinov A.V. Secular total solar irradiance trend during solar cycles 21–23 // Geophys. Res. Lett. 2003. V.30, №5. Р.1199–2002.
8. Lee R.B., Wilson R.S., Thomas S. Long-term total solar irradiance (TSI) variability trends: 1984–2004: American Meteorological Society (AMS) 13th Conference on Satellite Meteorology and Oceanography, Norfolk, Virginia, 20–24 September 2004. Norfolk, Virginia, 2004. P6.31. Р.1–5.
9. Миланкович М. Математическая климатология и астрономическая теория колебаний климата. М.; Л., 1939. 207 с.
10. Монин А.С. Вращение Земли и климат. Л., 1972. 112 с.
11. The solar output and its variation / Ed. O.R.White. Boulder, Colorado Associated University Press, 1977. 526 p.
12. Иванов В.В. Периодические колебания погоды и климата // Успехи физ. наук. 2002. Т.172, №7. С.777–811.
13. Нестеров В.В. Стандарт основных вычислений астрономии. М., 2001. 84 с.
14. Giorgini J.D., Yeomans D.K., Chamberlin A.B. et al. JPL’s on-line Solar System data service // Bull. Amer. Astron. Soc. 1996. V.28, №3. Р.1158.
15. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. М., 1972. Т.1, 2. 603 с.
16. Rieger E., Kanbach G., Reppin C. et al. A 154-day periodicity in the occurrence of hard solar flares? // Nature. 1984. V.312. Р.623–625.
17. Bai T., Sturrock P.A. Evidence for a fundamental period of the Sun and its relation to the 154 day complex of periodicities // Astrophys. J. 1993. V.409. Р.476–486.
18. Lean J.L., Brueckner G.E. Intermediate-term solar periodicities: 100–500 days. // Astrophys. J. 1989. Vol.337. Р.568– 578.