Izvestiya of Saratov University.

Earth Sciences

ISSN 1819-7663 (Print)
ISSN 2542-1921 (Online)


For citation:

Bezuglova N. N., Sukovatov K. Y. The influence of circulation factors on the quantity of atmospheric precipitation in the cold season in Western Siberia. Izvestiya of Saratov University. Earth Sciences, 2024, vol. 24, iss. 4, pp. 250-258. DOI: 10.18500/1819-7663-2024-24-4-250-258, EDN: KIHGQS

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 20)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
551.513.7:515.582:515.583
EDN: 
KIHGQS

The influence of circulation factors on the quantity of atmospheric precipitation in the cold season in Western Siberia

Abstract: 

Introduction. The work is devoted to the analysis of the influence of different states of the circumpolar vortex on local features of the geopotential fields, which, in turn, determine the variability of cold season precipitation for the studied territory of Western Siberia. Data and Methods. A statistical analysis of time series of seasonally average values of the precipitation amount in the cold season was performed, obtained from 33 meteorological stations located within the selected coordinate area. To analyze the distribution of hydrometeorological fields corresponding to different states of the circumpolar vortex, composite spatial distributions corresponding to the ten most typical years for both phases of the POL teleconnection index were constructed. Results and Discussion. A statistically significant relationship was established between the amount of precipitation in the cold season (November–March) on the studied territory and the state of the circumpolar vortex. It was shown that under the conditions of the negative phase of the POL index, the amount of precipitation in the cold season is greater than under the conditions of the positive phase of this index. Conclusions. Based on the results of the work, it was concluded that under conditions of a weak circumpolar vortex and developed meridional processes (negative phase of POL) in the studied area, the amount of atmospheric precipitation in the cold season is greater than under conditions of a strong (positive phase of POL) circumpolar vortex and active latitudinal processes.

Reference: 
  1. Gao T., Yu J., Paek H. Impacts of four northernhemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific // Theoretical and Applied Climatology. 2016. Vol. 129. P. 815–831. https://doi.org/10.1007/S00704-016-1801-2
  2. Gao N., Bueh C., Xie Z., Gong Y. A Novel Identification of the Polar/Eurasia Pattern and Its Weather Impact in May // Journal of Meteorological Research. 2019. Vol. 33. P. 810–825. https://doi.org/10.1007/s13351-019-9023-z
  3. Mirhashemi H., Hasanvand Z. The effect of teleconnection patterns on monthly rainfall in Khorramabad and Kermanshah stations // Water and Soil Management and Modeling. 2023. Vol. 3, iss. 4. P. 133–151. https://doi.org/10.22098/mmws.2022.11702.1159
  4. Золина О. Г., Булыгина О. Н. Современная климатическая изменчивость характеристик экстремальных осадков в России // Фундаментальная и прикладная климатология. 2016. Т. 1. С. 84–103. https://doi.org/10.21513/2410-8758-2016-1-84-103, EDN: WBFQYV
  5. База данных GPCC. URL: https://www.dwd.de/EN/ourservices/gpcc/gpcc.html (дата обращения: 23.04.2024).
  6. База данных CRU TS4. URL: http://badc.nerc.ac.uk/data/cru/ (дата обращения: 24.04.2024).
  7. База данных GHCN. URL: https://www.ncei.noaa.gov/access/monitoring/ghcn-gridded-products/ (дата обращения: 25.04.2024).
  8. База данных ERA. URL: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (дата обращения: 25.04.2024).
  9. База данных NCEP/NCAR. URL: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (дата обращения: 22.04.2024).
  10. Barnston A. G., Livezey R. E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns // MonthlyWeather Review. 1987. Vol. 115. P. 1083–1126, https://doi.org/10.1175/1520-0493(1987)1152.0.CO;2
  11. Climate Prediction Center [сайт]. URL: http://www.cpc.ncep.noaa.gov (дата обращения: 22.04.2024).
  12. Francis J. A., Vavrus S. J. Evidence for wavier jet stream in response to rapid Arctic warming // Environmental Research Letters. 2015. Vol. 10, № 1. Article number 014005. https://doi.org/10.1088/1748-9326/10/1/014005
  13. Zhai W., Wang Z., Feng Y., Xue L., Ma Z., Tian L., Sun H. Developing the Actual Precipitation Probability Distribution Based on the Complete Daily Series // Sustainability. 2023. Vol. 15, iss. 17. Article number 13136. https://doi.org/10.3390/su151713136
  14. Cavanaugh N. R., Gershunov A., Panorska A. K., Kozubowski T. J. The probability distribution of intense daily precipitation // Geophysical Research Letters. 2015. Vol. 42. P. 1560–1567. https://doi.org/10.1002/2015GL063238/
  15. Обзоры Гидромедцентра РФ. URL: https://meteoinfo. ru/circulation-review (дата обращения: 23.04.2024).
Received: 
16.07.2024
Accepted: 
12.09.2024
Published: 
29.11.2024