Izvestiya of Saratov University.

Earth Sciences

ISSN 1819-7663 (Print)
ISSN 2542-1921 (Online)


For citation:

Khassanov D. I., Lonshakov M. A. Evaluation of fault reactivation risks during drilling of the horizontal well using results of one-dimensional geomechanical modeling. Izvestiya of Saratov University. Earth Sciences, 2024, vol. 24, iss. 3, pp. 172-183. DOI: 10.18500/1819-7663-2024-24-3-172-183, EDN: MERWJG

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 70)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
550.832:622.24.001
EDN: 
MERWJG

Evaluation of fault reactivation risks during drilling of the horizontal well using results of one-dimensional geomechanical modeling

Autors: 
Khassanov Damir Irekovich, Kazan Federal University
Lonshakov Marat Andreevich, Kazan Federal University
Abstract: 

The article presents main factors affecting the fault stability. Concepts of critically stressed faults and critical pore pressure are discussed. The methodologies for evaluation of stressed-deformed state of rocks in the vicinity of fault zones during reservoir depletion and injection, well drilling are analyzed. 1D geomechanical models of fishbone sidetracks and main borehole of the well N are constructed. The fault stability evaluation is made using Mohr – Coulomb failure criterion from data of in situ stresses and near-wellbore stresses calculated from Kirsch wellbore solution. Optimal mud weight ranges are determined for safe drilling of fishbone boreholes accounting fault reactivation risks. Basic recommendations for optimal drilling through the interval of unstable shales are made.

Reference: 
  1. Giorgetti C., Tesei T., Scuderi M., Collettini C. Experimental insights into fault reactivation in gouge-filled fault zones // Journal of Geophysical Research: Solid Earth. 2019. Vol. 124. P. 4189–4204. https://doi.org/10.1029/2018JB016813
  2. Jaeger J. Shear failure of anisotropic rocks // Geological Magazine. 1960. Vol. 97. P. 65–72. https://doi.org/10.1017/S0016756800061100
  3. Hawkes C. D., McLellan P. J., Zimmer U., Bachu S. Geomechanical Factors Affecting Geological Storage of CO2 in Depleted Oil and Gas Reservoirs // Journal of Canadian Petroleum Technology. 2005. Vol. 44, № 10. 11 p. https://doi.org/10.2118/05-10-05
  4. Hubbert M. K., Rubey W. W. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluidfilled porous solids and its application to overthrust faulting // Geological Society of America Bulletin. 1959. Vol. 70. P. 115–166. https://doi.org/10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
  5. Chen Z., Deng J., Yu B., Zhang Y., Chen Z. Estimation of upper limit of pore pressure by fault stability analysis // Journal of Geophysics and Engineering. 2016. Vol. 13, № 3. P. 313–319. https://doi.org/10.1088/1742-2132/13/3/313
  6. Zoback M. Reservoir Geomechanics. Cambridge University Press, 2007. 505 p. https://doi.org/10.1017/CBO9780511586477
  7. Jolie E., Scott S., Faulds J., Chambefort I., Axelsson G., Gutiérrez-Negrín L., Zemedkun M. Geological controls on geothermal resources for power generation // Nature Reviews Earth & Environment. 2021. Vol. 2, № 5. P. 324– 339. https://doi.org/10.1038/s43017-021-00154-y
  8. Behnoud far P., Ameri M., Orooji M. A novel approach to estimate the variations in stresses and fault state due to depletion of reservoirs // Arabian Journal of Geosciences. 2017. Vol. 10, № 18. 13 p. https://doi.org/10.1007/s12517-017-3184-9
  9. Hettema M., Schutjens P., Verboom B., Gussinklo H. Production-induced compaction of a sandstone reservoir: The strong influence of stress path // SPE Reservoir Eval. & Eng. 2000. Vol. 3, № 4. P. 342–347. https://doi.org/10.2118/65410-PA
  10. Zhang J. Applied Petroleum Geomechanics. Gulf Professional Publishing, 2019. 518 p. https://doi.org/10.1016/B978-0-12-814814
  11. Platteeuw I. Initiation of Fault Reactivation: New Insights into the Effect of Differential Compaction. MSc Thesis. Delft University of Technology, 2018. 87 p.
  12. Figueiredo B., Tsang C., Rutqvist J., Bensabat J., Niemi A. Coupled hydro-mechanical processes and fault reactivation induced by CO2 injection in a three-layer storage formation // International Journal of Greenhouse Gas Control. 2015. Vol. 39. P. 432–448. https://doi.org/10.1016/j.ijggc.2015.06.008
  13. Rutqvist J., Birkholzer J., Cappa F., Tsang C. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis // Energy Convers Manage. 2007. Vol. 48, № 6. P. 1798–1807. https://doi.org/10.1016/j.enconman.2007.01.021
  14. Abdideh M., Hammid Y. An evaluation of rock integrity and fault reactivation in the cap rock and reservoir rock due to pressure variations // Iranian Journal of Oil & Gas Science and Technology. 2019. Vol. 8, № 3. P. 18–39. https://doi.org/10.22050/ijogst.2019.136347.1462
  15. Ezati M., Honarmand J., Ali Riahi M. Evaluation of Faults Reactivation Tenacity in One of the Low-Pressure SW Iranian Carbonate Reservoirs: An IOR Viewpoint // Journal of Petroleum Science and Technology. 2020. Vol. 10. P. 20– 29. https://doi.org/10.22078/jpst.2020.3825.1605
  16. Dubinya N. V. Spatial orientations of hydraulically conductive shear natural fractures for an arbitrary stress state: An analytical study of governing geomechanical factors // Journal of Petroleum Science and Engineering. 2022. Vol. 212. 16 p. https://doi.org/1010.1016/j.petrol.2022.110288
  17. Павлов В. А., Кулешов В. С., Королев Д. О., Субботин М. Д., Морева В. А., Недомовный Б. Н., Павлюков Н. А. Практическое руководство по геомеханическому моделированию для решения задач разработки месторождений нефти и газа. Тюмень : ООО «Тюменский нефтяной научный центр», 2023. 440 с.
  18. Fernandez-Ibanes F., Castillo C., Firth A., Courteney S. Assessing stability of reservoir bounding faults while drilling // SPE Annual Technical Conference and Exhibition. Florence, 2010. 10 p. https://doi.org/10.2118/132826-MS 
  19. Frydman M., Holzberg B., Pastor J., Salies J., Pedroso C. Reducing Fault Reactivation Risk on Deepwater Drilling // SPE Latin America and Caribbean Petroleum Engineering Conference. Argentina, 2017. 15 p. https://doi.org/10.2118/185619-MS
  20. Atkinson C., Thiercelin M. Pressurization of a fractured wellbore // International Journal of Fracture. 1997. Vol. 83. P. 243–273. https://doi.org/10.1023/A:1007364213515
  21. Gercek H. Poisson’s ratio values for rocks // International Journal of Rock Mechanics and Mining Sciences. 2007. Vol. 44, № 1. P. 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011
  22. Dohmen T., Zhang J., Barker L., Blangy J. Microseismic magnitudes and b-values for delineating hydraulic fracturing and depletion // Society of Petroleum Engineers Journal. 2017. Vol. 22, № 5. P. 1624–1634. https://doi.org/10.2118/186096-PA
  23. Taghipour M., Ghafoori M., Lashkaripour G. Estimation of the current stress field and fault reactivation analysis in the Asmari reservoir, SW Iran // Petroleum Science. 2019. Vol. 16. P. 513–526. https://doi.org/10.1007/s12182-019-0331-9
  24. Bagheri H., Tanha A., Doulati Ardejani F. Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir // Journal of Petroleum Exploration and Production Technology. 2021. Vol. 11. P. 3935–3961. https://doi.org/10.1007/s13202-021-01291-2
  25. Inocencio P. Wellbore Stability and the Thermal Effects Analysis for a North Sea Exploration Well. Thesis submitted to Norwegian University of science and technology, 2015. 75 p.
  26. Лукина Т. Ю., Потапов А. Г., Богданова О. Е., Потапов О. А. Геомеханическое моделирование месторождения сахалинского шельфа под задачи бурения скважин // Вести газовой науки. 2017. № 4 (32). С. 159– 168. EDN: YSTJWB
  27. Лукин С. В., Есипов С. В., Жуков В. В., Овчаренко Ю. В., Хомутов А. Ю., Шевчук Т. Н., Сусляков И. В. Расчет устойчивости ствола скважины для предотвращения осложнений в бурении // Нефтяное хозяйство. 2016. № 6. С. 70–73. EDN: WCLJTV
  28. Le K., Rasiuli V. Determination of safe mud weight windows for drilling deviated wellbores: A case study in the North Perth Basin // WIT Transactions on Engineering Sciences, 2012. Vol. 81. P. 83–95. https://doi.org/10.2495/PMR120081
  29. Липатов А. В. Моделирование процесса ликвидации поглощений в скважинах вязкоупругими составами : дис. … канд. техн. наук. Самара, 2016. 100 с. EDN: ZQIMXF
  30. Гараванд А., Ребецкий Ю. Л. Методы геомеханики и тектонофизики при решении проблем устойчивости нефтяных скважин в процессе бурения // Геофизические исследования. 2018. Т. 19, № 1. С. 159–168. https://doi.org/10.21455/gr2018.1-5, EDN: ZJVAHH
  31. Самойлов М. И., Совраненко А. Н., Морева В. А., Кулешов В. С., Павлюков Н. А., Куркин П. А. Подготовка библиотеки геомеханических свойств для оптимизации дизайнов ГРП на объектах АО «Самотлорнефтегаз» // Нефтяная провинция. 2023. № 4 (36). С. 101–112. https://doi.org/10.25689/NP.2023.4.101-112, EDN: FVXMFY
  32. Юсупов Я. И., Заглядин Я. И., Солдатова А. И., Калмыков Г. А. Применение геомеханического моделирования для оптимизации траектории скважин при разработке Тутлеймско-Абалакского комплекса Красноленинского свода // Геофизика. 2024. № 1. С. 59–66. https://doi.org/10.34926/geo.2024.15.91.007, EDN: NMAHSD.
  33. Лядова Н. А., Клыков П. И., Предеин А. А. Численное решение задач геомеханики // Вестник ПНИПУ. Геология. Нефтегазовое и горное дело. 2020. Т. 20, № 2. С. 226–236. https://doi.org/10.15593/2224-9923/2020.2.3, EDN: WSHRSZ
Received: 
18.04.2024
Accepted: 
08.08.2024
Published: 
30.09.2024