Для цитирования:
Хасанов Д. И., Лоншаков М. А. Оценка рисков реактивации разломов при бурении горизонтальной скважины по результатам одномерного геомеханического моделирования // Известия Саратовского университета. Новая серия. Серия: Науки о Земле. 2024. Т. 24, вып. 3. С. 172-183. DOI: 10.18500/1819-7663-2024-24-3-172-183, EDN: MERWJG
Оценка рисков реактивации разломов при бурении горизонтальной скважины по результатам одномерного геомеханического моделирования
Рассмотрены основные факторы, влияющие на устойчивость разломов, а также понятия критически напряженного состояния разлома и критического порового давления. Проведен анализ методик, применяемых для оценки напряженно-деформированного состояния горных пород в приразломных зонах при активном истощении залежи, нагнетании флюидов в продуктивные коллекторы, бурении скважин. Построены одномерные геомеханические модели основного ствола и боковых стволов горизонтальной скважины N по типу фишбон. Проведена оценка устойчивости разломов при использовании критерия разрушения Мора – Кулона по данным пластовых и околоскважиных напряжений, рассчитанных по уравнениям Кирша. Установлены оптимальные диапазоны плотности бурового раствора для каждого ствола скважины N с учётом рисков реактивации разломов. Сформированы основные рекомендации при бурении интервалов, сложенных неустойчивыми глинистыми породами.
- Giorgetti C., Tesei T., Scuderi M., Collettini C. Experimental insights into fault reactivation in gouge-filled fault zones // Journal of Geophysical Research: Solid Earth. 2019. Vol. 124. P. 4189–4204. https://doi.org/10.1029/2018JB016813
- Jaeger J. Shear failure of anisotropic rocks // Geological Magazine. 1960. Vol. 97. P. 65–72. https://doi.org/10.1017/S0016756800061100
- Hawkes C. D., McLellan P. J., Zimmer U., Bachu S. Geomechanical Factors Affecting Geological Storage of CO2 in Depleted Oil and Gas Reservoirs // Journal of Canadian Petroleum Technology. 2005. Vol. 44, № 10. 11 p. https://doi.org/10.2118/05-10-05
- Hubbert M. K., Rubey W. W. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluidfilled porous solids and its application to overthrust faulting // Geological Society of America Bulletin. 1959. Vol. 70. P. 115–166. https://doi.org/10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
- Chen Z., Deng J., Yu B., Zhang Y., Chen Z. Estimation of upper limit of pore pressure by fault stability analysis // Journal of Geophysics and Engineering. 2016. Vol. 13, № 3. P. 313–319. https://doi.org/10.1088/1742-2132/13/3/313
- Zoback M. Reservoir Geomechanics. Cambridge University Press, 2007. 505 p. https://doi.org/10.1017/CBO9780511586477
- Jolie E., Scott S., Faulds J., Chambefort I., Axelsson G., Gutiérrez-Negrín L., Zemedkun M. Geological controls on geothermal resources for power generation // Nature Reviews Earth & Environment. 2021. Vol. 2, № 5. P. 324– 339. https://doi.org/10.1038/s43017-021-00154-y
- Behnoud far P., Ameri M., Orooji M. A novel approach to estimate the variations in stresses and fault state due to depletion of reservoirs // Arabian Journal of Geosciences. 2017. Vol. 10, № 18. 13 p. https://doi.org/10.1007/s12517-017-3184-9
- Hettema M., Schutjens P., Verboom B., Gussinklo H. Production-induced compaction of a sandstone reservoir: The strong influence of stress path // SPE Reservoir Eval. & Eng. 2000. Vol. 3, № 4. P. 342–347. https://doi.org/10.2118/65410-PA
- Zhang J. Applied Petroleum Geomechanics. Gulf Professional Publishing, 2019. 518 p. https://doi.org/10.1016/B978-0-12-814814
- Platteeuw I. Initiation of Fault Reactivation: New Insights into the Effect of Differential Compaction. MSc Thesis. Delft University of Technology, 2018. 87 p.
- Figueiredo B., Tsang C., Rutqvist J., Bensabat J., Niemi A. Coupled hydro-mechanical processes and fault reactivation induced by CO2 injection in a three-layer storage formation // International Journal of Greenhouse Gas Control. 2015. Vol. 39. P. 432–448. https://doi.org/10.1016/j.ijggc.2015.06.008
- Rutqvist J., Birkholzer J., Cappa F., Tsang C. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis // Energy Convers Manage. 2007. Vol. 48, № 6. P. 1798–1807. https://doi.org/10.1016/j.enconman.2007.01.021
- Abdideh M., Hammid Y. An evaluation of rock integrity and fault reactivation in the cap rock and reservoir rock due to pressure variations // Iranian Journal of Oil & Gas Science and Technology. 2019. Vol. 8, № 3. P. 18–39. https://doi.org/10.22050/ijogst.2019.136347.1462
- Ezati M., Honarmand J., Ali Riahi M. Evaluation of Faults Reactivation Tenacity in One of the Low-Pressure SW Iranian Carbonate Reservoirs: An IOR Viewpoint // Journal of Petroleum Science and Technology. 2020. Vol. 10. P. 20– 29. https://doi.org/10.22078/jpst.2020.3825.1605
- Dubinya N. V. Spatial orientations of hydraulically conductive shear natural fractures for an arbitrary stress state: An analytical study of governing geomechanical factors // Journal of Petroleum Science and Engineering. 2022. Vol. 212. 16 p. https://doi.org/1010.1016/j.petrol.2022.110288
- Павлов В. А., Кулешов В. С., Королев Д. О., Субботин М. Д., Морева В. А., Недомовный Б. Н., Павлюков Н. А. Практическое руководство по геомеханическому моделированию для решения задач разработки месторождений нефти и газа. Тюмень : ООО «Тюменский нефтяной научный центр», 2023. 440 с.
- Fernandez-Ibanes F., Castillo C., Firth A., Courteney S. Assessing stability of reservoir bounding faults while drilling // SPE Annual Technical Conference and Exhibition. Florence, 2010. 10 p. https://doi.org/10.2118/132826-MS
- Frydman M., Holzberg B., Pastor J., Salies J., Pedroso C. Reducing Fault Reactivation Risk on Deepwater Drilling // SPE Latin America and Caribbean Petroleum Engineering Conference. Argentina, 2017. 15 p. https://doi.org/10.2118/185619-MS
- Atkinson C., Thiercelin M. Pressurization of a fractured wellbore // International Journal of Fracture. 1997. Vol. 83. P. 243–273. https://doi.org/10.1023/A:1007364213515
- Gercek H. Poisson’s ratio values for rocks // International Journal of Rock Mechanics and Mining Sciences. 2007. Vol. 44, № 1. P. 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011
- Dohmen T., Zhang J., Barker L., Blangy J. Microseismic magnitudes and b-values for delineating hydraulic fracturing and depletion // Society of Petroleum Engineers Journal. 2017. Vol. 22, № 5. P. 1624–1634. https://doi.org/10.2118/186096-PA
- Taghipour M., Ghafoori M., Lashkaripour G. Estimation of the current stress field and fault reactivation analysis in the Asmari reservoir, SW Iran // Petroleum Science. 2019. Vol. 16. P. 513–526. https://doi.org/10.1007/s12182-019-0331-9
- Bagheri H., Tanha A., Doulati Ardejani F. Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir // Journal of Petroleum Exploration and Production Technology. 2021. Vol. 11. P. 3935–3961. https://doi.org/10.1007/s13202-021-01291-2
- Inocencio P. Wellbore Stability and the Thermal Effects Analysis for a North Sea Exploration Well. Thesis submitted to Norwegian University of science and technology, 2015. 75 p.
- Лукина Т. Ю., Потапов А. Г., Богданова О. Е., Потапов О. А. Геомеханическое моделирование месторождения сахалинского шельфа под задачи бурения скважин // Вести газовой науки. 2017. № 4 (32). С. 159– 168. EDN: YSTJWB
- Лукин С. В., Есипов С. В., Жуков В. В., Овчаренко Ю. В., Хомутов А. Ю., Шевчук Т. Н., Сусляков И. В. Расчет устойчивости ствола скважины для предотвращения осложнений в бурении // Нефтяное хозяйство. 2016. № 6. С. 70–73. EDN: WCLJTV
- Le K., Rasiuli V. Determination of safe mud weight windows for drilling deviated wellbores: A case study in the North Perth Basin // WIT Transactions on Engineering Sciences, 2012. Vol. 81. P. 83–95. https://doi.org/10.2495/PMR120081
- Липатов А. В. Моделирование процесса ликвидации поглощений в скважинах вязкоупругими составами : дис. … канд. техн. наук. Самара, 2016. 100 с. EDN: ZQIMXF
- Гараванд А., Ребецкий Ю. Л. Методы геомеханики и тектонофизики при решении проблем устойчивости нефтяных скважин в процессе бурения // Геофизические исследования. 2018. Т. 19, № 1. С. 159–168. https://doi.org/10.21455/gr2018.1-5, EDN: ZJVAHH
- Самойлов М. И., Совраненко А. Н., Морева В. А., Кулешов В. С., Павлюков Н. А., Куркин П. А. Подготовка библиотеки геомеханических свойств для оптимизации дизайнов ГРП на объектах АО «Самотлорнефтегаз» // Нефтяная провинция. 2023. № 4 (36). С. 101–112. https://doi.org/10.25689/NP.2023.4.101-112, EDN: FVXMFY
- Юсупов Я. И., Заглядин Я. И., Солдатова А. И., Калмыков Г. А. Применение геомеханического моделирования для оптимизации траектории скважин при разработке Тутлеймско-Абалакского комплекса Красноленинского свода // Геофизика. 2024. № 1. С. 59–66. https://doi.org/10.34926/geo.2024.15.91.007, EDN: NMAHSD.
- Лядова Н. А., Клыков П. И., Предеин А. А. Численное решение задач геомеханики // Вестник ПНИПУ. Геология. Нефтегазовое и горное дело. 2020. Т. 20, № 2. С. 226–236. https://doi.org/10.15593/2224-9923/2020.2.3, EDN: WSHRSZ