Для цитирования:
Богданов М. Б., Червяков М. Ю. Оценка импульсной передаточной характеристики земной климатической системы на столетнем интервале времени // Известия Саратовского университета. Новая серия. Серия: Науки о Земле. 2020. Т. 20, вып. 4. С. 226-233. DOI: 10.18500/1819-7663-2020-20-4-226-233
Оценка импульсной передаточной характеристики земной климатической системы на столетнем интервале времени
Земная климатическая система (ЗКС) рассматривается как линейная система, входом которой является изменение солнечной постоянной, а выходом – аномалия глобально осредненной приповерхностной температуры. В результате восстановления импульсной передаточной характеристики на столетнем интервале с использованием реконструированных данных о солнечной постоянной и глобальной температуре показано, что ее постоянная времени равна 32 годам ± 14 лет. Чувствительность ЗКС к радиационному воздействию составляет 1.31 ± 0.63 К·Вт-1·м2, а коэффициент положительной обратной связи – 4.4 ± 2.1. Найденные значения характеристик ЗКС не противоречат данным, полученным осреднением по ансамблю моделей CMIP5.
- Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / eds. T. F. Stocker [et al.]. Cambridge : Cambridge Univ. Press, 2013. 1535 p.
- Дымников В. П., Лыкосов В. Н., Володин Е. М. Моделирование климата и его изменений : современные проблемы // Вестник РАН. 2012. Т. 82, № 3. С. 227–336.
- Douglass D. H., Clader B. D., Knox R. S. Climate sensitivity of Earth to solar irradiance : update // Paper presented at 2004 solar radiation and climate (SORCE) meeting on decade variability in the Sun and the climate, Meredith, New Hampshire, 27–29 October 2004. P. 1–16 [Электронный ресурс]. URL: http://arxiv.org/abs/physics/0411002 (дата обращения: 05.03.2020).
- Lockwood M. Recent changes in solar outputs and the global mean surface temperature. III. Analysis of contributions to global mean air surface temperature rise // Proceedings of the Royal Society A. 2008. Vol. 464. P. 1387–1404.
- Bogdanov M. B., Efremova T. Yu., Katrushchenko A. V. Estimation of impulse response of Earth’s climate system at short time intervals // Journal of Atmospheric and SolarTerrestrial Physics. 2012. Vol. 86. P. 51–55.
- Богданов М. Б., Червяков М. Ю. Оценка времени реакции и чувствительности земной климатической системы к радиационному воздействию // Изв. Сарат. ун-та. Нов. сер. Сер. Науки о Земле. 2019. Т. 19, вып. 4. С. 216–223. DOI: https://doi.org/10.18500/1819-7663-2019-19-4-216-223
- Schwartz S. E. Heat capacity, time constant, and sensitivity of Earth’s climate system // Journal of Geophysical Research. 2007. Vol. 112. D24S05. DOI: https://doi.org/10.1029/2007JD008746
- Schwartz S. E. Reply to comments by G. Foster et al., R. Knutti et al., and N. Scafetta on ‘‘Heat capacity, time constant, and sensitivity of Earth’s climate system’’ // Journal of Geophysical Research. 2008. Vol. 113. D15105. DOI: https://doi.org/10.1029/2008JD009872
- Scafetta N. Comment on ‘‘Heat capacity, time constant, and sensitivity of Earth’s climate system’’ by S. E. Schwartz // Journal of Geophysical Research. 2008. Vol. 113. D15104. DOI: https://doi.org/10.1029/2007JD009586
- Scafetta N. Empirical analysis of the solar contribution to global mean air surface temperature change // Journal of Atmospheric and Solar-Terrestrial Physics. 2009. Vol. 71. P. 1916–1923.
- Мохов И. И., Безверхний В. А., Елисеев А. В., Карпенко А. А. Взаимосвязь изменений глобальной приповерхностной температуры с изменениями солнечной активности по данным наблюдений и реконструкций для XVII–XX веков и по модельным расчетам // Доклады РАН. 2006. Т. 409, № 1. С. 115–119.
- Мохов И. И., Смирнов Д. А. Диагностика причинноследственной связи солнечной активности и изменений глобальной приповерхностной температуры Земли // Известия РАН. Физика атмосферы и океана. 2008. Т. 44, № 3. С. 283–293.
- Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М. : Наука, 1979. 142 с.
- Тихонов А. Н., Гончарский А. В., Степанов В. В., Ягола А. Г. Регуляризирующие алгоритмы и априорная информация. М. : Наука, 1983. 200 с.
- Гончарский А. В., Черепащук А. М., Ягола А. Г. Некорректные задачи астрофизики. М. : Наука, 1985. 352 с.
- Lean J. Evolution of the Sun’s spectral irradiance since the Maunder minimum // Geophysical Research Letters. 2000. Vol. 27. P. 2425–2428.
- Lean J. Solar irradiance reconstruction // IGBP Pages. World Data Center for Paleoclimatology. Data Contribution Series. NOAA/NGDC Paleoclimatology Program. Boulder, CO, USA. 2004. № 2004-035. P. 1–12.
- Krivova N. A., Vieira L. E. A., Solanki S. K. Reconstruction of solar spectral irradiance since the Maunder minimum // Journal of Geophysical Research. 2010. Vol. 115. A12112. DOI: https://doi.org/10.1029/2010JA015431
- Yeo K. L., Krivova N. A., Solanki S. K. Solar cycle variation in solar irradiance // Space Science Reviews. 2014. Vol. 186. P. 137–167. DOI: https://doi.org/10.1007/s11214-014-0061-7.
- Egorova T., Schmutz W., Rozanov E., Shapiro A. I., Usoskin I., Beer J., Tagirov R. V., Peter T. Revised historical solar irradiance forcing // Astronomy and Astrophysics. 2018. Vol. 615. A85. P. 101–116. DOI: https://doi.org/10.1051/0004-6361/201731199
- Mann M. E., Zhang Z., Hughes M. K., Bradley R. S., Miller S. K., Rutherford S., Ni F. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia // Proceedings of the National Academy of Sciences. 2008. Vol. 105. P. 13252–13257. DOI: https://doi.org/10.1073/pnas.0805721105
- Hansen J., Sato M., Russell G., Kharecha P. Climate sensitivity, sea level, and atmospheric carbon dioxide // Philosophical Transactions of the Royal Society. 2013. Vol. 371. P. 234–245. DOI: https://doi.org/10.1098/rsta.2012.0294