

УДК 550.8.053

Геолого-геохимические особенности вулканических комплексов Нижне-Таежного рудного узла (Северное Приморье)

В. В. Ивин, Е. И. Медведев, И. И. Фатьянов

Ивин Виталий Викторович, кандидат геолого-минералогических наук, старший научный сотрудник лаборатории нелинейной металлогении, Дальневосточный геологический институт Дальневосточного отделения Российской академии наук, Владивосток, ivin_vv@mail.ru

ГЕОЛОГИЯ

Медведев Евгений Иванович, научный сотрудник лаборатории нелинейной металлогении, Дальневосточный геологический институт Дальневосточного отделения Российской академии наук, Владивосток, Cage21@mail.ru

Фатьянов Игорь Иванович, кандидат геолого-минералогических наук, старший научный сотрудник лаборатории нелинейной металлогении, Дальневосточный геологический институт Дальневосточного отделения Российской академии наук, Владивосток, 1937fat@list.ru

Нижне-Таежная площадь входит в состав Восточно-Сихотэ-Алиньского вулкано-плутонического пояса (ВСАВПП), расположенного в зоне перехода континент - океан, и имеет весьма сложенное геологическое строение. Изучение геолого-геохимического состава, строения и закономерностей размещения вулканогенно-осадочных пород Нижне-Таежной площади (НТП) позволит существенно дополнить данные по геолого-геохимическим особенностям мезозоиско-кайнозойского этапа формирования ВСАВПП. Новизна работы состоит в том, что для НТП впервые получены геохимические данные по химическому составу петрогенных, редких и рассеянных элементов разновозрастных вулканических комплексов - приморского, самаргинского, богопольского и кизинского. В результате проведенных исследований выявлено, что изучаемые комплексы сложены высококалиевыми разностями пород и различаются по содержанию редких и рассеянных элементов. Приморский комплекс отличается повышеной концентрацией вольфрама, цинка, свинца, тория, лантана, церия, низким содержанием ниобия, стронция, циркония и титана. Самаргинский комплекс характеризуется отчетливым минимумом содержания титана, стронция и максимумом - неодима. Богопольский и кизинский комплексы по распределению редких и рассеянных элементов имеют схожий трендовый облик с другими вулканическими комплексами узла, отличаясь только уровнем их концентрации.

Ключевые слова: комплекс, геохимия, некогерентные и редкоземельные элементы, вулканические породы.

Geological and Geochemical Features of the Volcanic Complexes of the Lower-Taiga Area (Northern Primorye)

V. V. Ivin, E. I. Medvedev, I. I. Fat'yanov

Vitaliy V. Ivin, https://orcid.org/0000-0002-7673-0099, Far East Geological Institute of Far East Branch of the Russian Academy of Sciences, 159 Prospect 100-letia Vladivostoka, Vladivostok 690022, Russia, ivin_vv@mail.ru

Evgenii I. Medvedev, https://orcid.org/0000-0003-1791-2017, Far East Geological Institute of Far East Branch of the Russian Academy of Sciences, 159 Prospect 100-letia Vladivostoka, Vladivostok 690022, Russia, Cage21@mail.ru

Igor I. Fat'ynov, https://orcid.org/0000-0003-0150-5230, Far East Geological Institute of Far East Branch of the Russian Academy of Sciences, 159 Prospect 100-letia Vladivostoka, Vladivostok 690022, Russia, Igor.1937@list.ru

© Ивин В. В., Медведев Е. И., Фатьянов И. И., 2019

The Lower Taiga area is a part of the East-Sikhote-Alin volcanicplutonic belt (ESAVPB), located in the transition zone of the continentocean which has a very folded geological structure. The study of the geological and geochemical composition, structure and patterns of the placement of volcanogenic-sedimentary rocks of the Lower Taiga area (LTA) will significantly complement the data on the geological and geochemical features of the Mesozoic-Cenozoic stage of the formation of the ESAVPB. The novelty of the work lies in the fact that for the LTA for the first time geochemical data were obtained on the chemical composition of the petrogenic, rare, and trace elements of different age volcanic complexes: Primorsky, Samarginsky, Bogopolsry and Kizinsky. As a result of the conducted research, it was revealed that the complexes under study are composed of highpotassium varieties of rocks and differ in the content of rare and trace elements. Primorsky complex differs in its increased concentration of tungsten, zinc, lead, thorium, lanthanum cerium, low content of niobium, strontium, zirconium and titanium. The Samarginsky complex is characterized by a distinct minimum of the content of titanium, strontium and maximum of neodymium. The Bogopolsky and Kizinsky complexes in terms of the distribution of rare and trace elements have a similar trend appearance with other volcanic complexes of the LTA, differing only in the level of their concentration.

Key words: complex, geochemistry, incoherent and rare earth elements, volcanic rocks.

DOI: https://doi.org/10.18500/1819-7663-2019-19-3-182-190

Введение

Многометалльное оруденение Нижне-Таежного рудного узла расположено в прибрежной зоне Восточно-Сихотэ-Алинского вулкано-плутонического пояса (ВСАВПП). Впервые в самостоятельную структуру ее выделил Н.С.Шатский в 1957 г. В современном виде ВСАВПП представляет собой линейную структуру вулканических и связанных интрузивных образований позднемелового-миоценового возраста, протянувшуюся вдоль побережья Японского моря и Татарского пролива. Изучением тектоно-магматических взаимоотношений ВСАВПП занимались многие исследователи. Впервые их обобщил А. В. Михайлов [1]. Современные исследователи А. И. Ханчук, Ю. А. Мартынов, Г. А. Валуй, В. К. Попов, В. Г. Сахно [2] считают, что ВСАВПП - это типоморфное звено Восточно-Азиатского окраинно-континентального вулканогена, реконструируемого А. И. Ханчуком [3] в качестве надсубдукционного. Существует и альтернативная точка зрения. Так, В. Г. Сахно [4] и В. П. Уткин [5] считают его рифтогенным сдвигово-раздвиговым типом. Но все авторы сходятся во мнении, что мезокайнозойский этап магматизма ВСАВПП весьма сложен, а изменение вектора движения Тихоокеанской плиты привело к смене режимов с надсубдукционного на трансформный и сопровождалось активной вулканической деятельностью. Детальное изучение геохимических характеристик вулканических комплексов рудного узла было осуществлено в Аналитическом центре ДВГИ ДВО РАН с помощью современных инструментальных методов. Содержание петрогенных

элементов определялось рентгенофлуоресцентным методом на сканирующем спектрометре S4 Pioneer (аналитик Е. А. Ноздрачев), содержание редких и рассеянных элементов – методом масс-спектрометрии с индуктивно связанной плазмой на спектрометре Agilent 7500c (аналитик М. Г. Блохин). Результаты этих исследований приводятся в данной статье.

Геологическое строение рудного узла

Нижне-Таежный рудный узел (НТРУ) занимает площадь более 500 км², входит в состав литоральной части ВСАВПП и соприкасается с детально исследованной Тернейской вулканоструктурой. НТРУ имеет весьма сложное геологическое строение, обусловленное его положением относительно крупных субмеридиональных разломов (рис. 1). Стратифицированные образования узла принадлежат к двум структурным этажам: нижнему терригенному, где они смяты в крутые складки северо-восточного простирания, и верхнему вулканогенному, включающему эффузивно-пирокластические образования приморского (турон-кампан), самаргинского (маастрихт), богопольского (маастрихт-дат) и кизинского (миоцен) комплексов [6].

На площади узла вскрыто более 30 рудных зон с редкометалльной, полиметаллической, олово-полиметалльно-серебряной, полиметалльносеребряной, серебряной и золотой минерализацией. Рудные зоны с олово-полиметалльно-серебряной и полиметалльно-серебряной минерализацией (Белембинская, Бортовая, Русловая и др.) размещены среди ороговикованных вулканитов в эндоконтакте Малиновской гранитоидной интрузии. Они состоят из крутопадающих сложноветвящихся кварцевых жил с прожилково-вкрапленной полиметалльно-сульфидной минерализацией.

Зоны с серебряной минерализацией (Кумирная, Ближняя, Водораздельная, Заманчивая, Крайняя, Неясная, Перевальная, Сентябрьская, Сюрприз и др.) убогосульфидны и пространственно разобщены с олово-полиметалльно-серебряными. Они размещены в кварц-серицит-гидрослюдистых метасоматитах, развитых по вулканитам. Зоны сложены жилами с полупрозрачным гребенчатым кварцем, содержащим сульфосоли серебра.

Строение и состав вулканических комплексов и их геолого-геохимические особенности

В пределах НТРУ распространены вулканогенные образования мелового палеоценового и миоценового возраста. Представителями сеноман-маастрихтского магматизма на площади узла являются вулканиты приморского и самаргинского комплексов (см. рис. 1). Вулканогенные отложения, относящиеся к приморскому комплексу, слагают значительную часть НТРУ, участвуя в строе-

Рис. 1. Геологическое строение Нижне-Таежного рудного узла (по материалам АО «Примгеология» с дополнениями авторов): *1* – аллювиальные отложения; *2* – кизинский вулканический комплекс (*N*₁); *3* – богопольская толща (P-K2bg); *4* – самаргинская толща (K2sm); *5* – приморская толща (K2pr); 6 – гранитоидные массивы (γδK2-P1); 7 – тектонические нарушения; *8* – рудные тела

нии разных вулкано-тектонических структур. По литолого-петрографическим особенностям они разделены на три пачки.

Первая (нижняя) пачка (K₂pr₁) сложена псаммитовыми и псефито-псаммитовыми литокристаллокластическими туфами риолитов, содержащими обломки пород фундамента. Редко встречаются игнимбриты риолитов. Видимая мощность отложений 250 м. Они распространены на востоке рудного узла и прослежены в бортах р. Таежной.

Вторая (средняя) пачка (K₂pr₂) состоит из спекшихся псефитовых и псефито-псаммитовых туфов риолитов. Редко отмечаются прослои игнимбритов и пепловых туфов. Типоморфной особенностью пачки является проявление вторичных изменений кварц-гидрослюдистого и пропилитового характера. Мощность пачки 250–450 м.

Третья (верхняя) пачка (К₂рг₃) в основном сложена игнимбритами с присутствием вулканического стекла, спекшимися и сваренными туфами риолитов. Мощность верхней пачки достигает 450 м.

Контакты вулканогенных образований приморского комплекса с ниже- и вышележащими отложениями преимущественно тектонические, и лишь в бассейне руч. Березового они согласно перекрываются накоплениями самаргинской свиты [7]. Вдоль разрывных нарушений, а также вблизи экструзий и некков самаргинского комплекса вулканиты приморского комплекса серицитизированы и окварцованы, местами превращены в кварц-серицитовые и андалузит-кварц-серицитовые метасоматиты.

Экструзивные образования в силу схожести их облика и состава с вмещающими вулканитами выделяются с трудом. Наиболее крупные (10–15 км²) сосредоточены в центральной части Носыревской кальдеры по левобережью нижнего течения р. Белембе, где они совместно с интрузивами гранитоидов образуют локальные очаговые структуры интрузивно-купольного типа. Более мелкие тела развиты в бассейне руч. Каменистого и по правобережью руч. Петрованова. Экструзивные тела сложены крупнопорфировыми риолитами, иногда переходящими в гранит-порфиры, а также кластолавами кислого состава. Наиболее крупный Белембинский экструзив сложен игниспумитами риолитов, часто окварцованными и эпидотизированными. В краевых частях экструзивов иногда отмечаются породы брекчиевой текстуры. Отдельные экструзивы обладают хорошо сохранившимся агломератовым строением.

Результаты исследования и их обсуждение

Химический состав образований приморского вулканического комплекса приведен в табл. 1, 2. Они относятся к высококалиевым разностям с умеренной глиноземистостью, нормальной и повышенной щелочностью и принадлежат к известково-щелочной серии. На классификационной диаграмме они расположены в поле

Химический состав магматических пород НТРУ	
--	--

Таблица 1

Химический															
элемент	7	8	9	16	17	18	19)	20	21	22	23	24	25	26
SiO ₂	74,81	76,79	76,98	62,3	62,44	74,7	63,3	35	58,73	76,9	78,65	74,97	73,77	64,53	64,93
TiO ₂	0,12	0,11	0,11	0,81	0,83	0,18	0,7	8	0,78	0,15	0,14	0,44	0,21	0,74	0,77
Al ₂ O ₃	13,72	12,32	12,43	15,9	15,89	13,68	3 16,	1	15,29	12,28	11,4	14,25	13,8	15,21	15,64
Fe ₂ O ₃	1,52	1,72	1,61	7,58	6,73	2,31	6,3	4	7,39	1,63	1,04	2,09	2,06	5,59	5,26
MnO	0,04	0,04	0,03	0,07	0,12	0,04	0,1	5	0,15	0,11	0,05	0,03	0,06	0,14	0,09
MgO	0,16	0,16	0,16	0,71	0,89	0,22	1,2	1	1,24	0,18	0,07	0,34	0,19	1,15	1,16
CaO	0,83	0,79	0,59	2,98	2,46	0,13	2,1	3	4,81	0,07	0,07	0,02	0,23	2,19	2,34
Na ₂ O	2,67	2,82	2,16	3,06	3,27	2,64	4,6	7	3,26	3,17	2,6	0,18	4	1,56	3,41
K ₂ O	5,65	4,48	5,1	3,68	3,53	4,36	3,1	8	2,14	3,91	4,48	5,08	4,31	6,54	4,35
P ₂ O ₅	0,03	0,03	0,03	0,34	0,33	0,05	0,3	2	0,32	0,04	0,03	0,05	0,04	0,23	0,24
п. п. п.	0,66	0,79	1,15	2,49	3,19	1,68	1,8	1	6,05	1,79	1,43	2,51	1,28	2,13	1,96
Σ	100,2	100,05	100,37	99,91	99,68	99,98	3 10	0 1	100,17	100,2	99,98	99,98	99,93	100	100,2
S	0,01	0,011	0,003	0,51	0,134	0,001	0,00	01	0,003	0,004	0,006	0,003	0,007	0,003	0,006
Cl	0,009	0,031	0,026	0,017	0,008	0,004	1 0,00	05	0,007	0,021	0,006	0,007	0,004	0,006	0,004
Sc	6	1	3	17	19	5	15	5	17	5	6	10	6	15	12
Ba	578	549	540	686	671	755	57	8	256	776	722	274	805	678	684
V	9	9	9	60	66	9	52	2	56	7	5	21	5	71	71
Cr	39	19	26	32	22	14	19)	21	54	28	16	25	31	16
Со	1	1	2	6	8	3	9		12	2	2	2	1	10	9
Ni	2	3	3	3	4	2	3		4	4	2	1	3	5	4
Cu	6	6	4	14	7	6	12	2	11	4	3	5	11	7	7
Zn	109	70	66	60	88	47	10	5	109	53	40	25	76	105	79
Ga	16	12	13	20	19	15	20)	19	13	13	19	15	17	17
As	6	22	5	14	17	3	5		1	5	7	15	34	3	11
Rb	184	137	161	95	103	148	10	0	77	121	140	239	145	225	145
Sr	109	109	106	318	317	98	36	4	234	49	49	43	116	215	288
Y	25	22	22	34	35	22	31	L	37	25	26	36	27	28	30
Zr	116	104	103	291	280	161	28	1	254	118	119	196	261	242	246
Nb	11	9	10	16	17	11	15	5	15	13	12	17	14	13	13
Pb	76	62	46	17	32	25	19)	18	25	18	34	49	43	31
Th	17	14	16	10	10	14	10)	9	12	11	17	13	9	10
U	4	3	3	2	2	2	2		2	2	2	4	3	2	2
	27	28	29	30	31		32	33	3 3	34	35	36	37	38	39
SiO ₂	63,11	63,32	74,21	76,4	9 73,9	96 6	2,16	62	2 63	3,37 7	3,84	72,12	73.52	63,67	64,46
TiO ₂	0,88	0,84	0,19	0,17	0,1	7 0	,84	0,8	38 0	,79	0,2	0,25	0.23	0,91	0,89
Al ₂ O ₃	15,86	15,94	14,27	/ 12,5	3 13,4	46 1	5,9	15,7	78 15	5,61	13,9	14,44	14.23	15,53	15,8
Fe ₂ O ₃	6,36	6,05	1,03	1,7	1,6	5 6	,29	6,3	33 5	,77	1,73	2,85	2.31	5,96	4,98
MnO	0,12	0,12	0,06	0,05	0,0	8 0	,12	0,1	2 (),1	0,02	0,06	0.03	0,11	0,1
MgO	1,81	1,72	0,16	0,21	0,2	2 1	,81	1,8	36 1	,61	0,14	0,21	0.17	1,01	0,93
CaO	2,92	2,66	1,06	0,41	0,4	2 3	,36	4,1	8 3	,07	0,25	0,57	0.22	3,55	3,28
Na ₂ O	2,94	3,3	3,16	2,85	2,2	5 3	,59	2,6	53 3	,33	3	3,6	3	2,16	3,51
K ₂ O	3,28	3,54	3,87	4,45	6,2	3 3	,11	3,3	35 3	,48	5,21	4,23	4.95	4,17	4,13
P ₂ O ₅	0,25	0,24	0,06	0,03	0,0	6 0	,25	0,2	25 0	,23	0,05	0,08	0.06	0,29	0,29

Химический	Порядковый номер												
элемент	27	28	29	30	31	32	33	34	35	36	37	38	39
П. П. П.	2,53	2,44	1,67	1,29	1,42	2,69	2,41	2,37	1,59	1,5	1.45	2,6	1,76
Σ	100,1	100,16	99,75	100,2	99,9	100,12	99,8	99,74	99,93	99,9	100.2	99,98	100,1
S	0,003	0,002	0,012	0,005	0,009	0,016	0,031	0,123	0,05	0,01	0.022	0,004	0,002
Cl	0,006	0,005	0,011	0,005	0,007	0,008	0,011	0,011	0,005	0,005	0.008	0,006	0,005
Sc	16	15	7	5	6	16	14	17	6	8	5	12	13
Ba	593	657	536	746	839	605	591	611	849	714	822	729	722
V	91	85	10	13	15	89	91	80	12	15	14	49	54
Cr	14	22	24	34	37	24	35	23	16	19	18	23	20
Co	12	12	2	1	1	12	9	11	1	3	3	8	6
Ni	3	5	2	2	2	5	4	4	4	3	0	3	4
Cu	7	6	8	7	10	11	10	7	5	5	5	8	9
Zn	84	78	53	33	52	97	101	78	19	50	32	94	54
Ga	19	16	18	13	15	18	19	16	14	14	14	17	16
As	16	28	14	14	4	21	8	7	18	8	15	11	7
Rb	98	100	128	139	189	94	94	103	185	129	164	145	122
Sr	453	443	256	245	196	538	426	442	239	195	198	340	349
Y	29	29	27	13	17	30	30	31	23	20	20	33	31
Zr	201	212	161	143	154	186	197	212	150	154	150	224	206
Nb	12	12	14	11	12	11	12	13	11	10	11	13	13
Pb	23	20	77	84	161	43	24	23	17	27	26	35	16
Th	9	9	15	14	12	7	7	9	16	14	15	14	13
U	3	2	4	2	3	2	2	3	4	3	3	3	3

Окончание табл. 1

Примечание. 7, 8, 9, 16, 17 – приморский вулканический комплекс; 18–23 – самаргинский комплекс; 24–36 – богопольский комплекс; 37–39 – кизинский комплекс. Рентгенофлуоресцентный анализ выполнен в ЦКП ДВГИ ДВО РАН на спектрометре S4 Pioneer (Bruker AXS, Германия) (аналитик Ноздрачев Е. А.). Концентрация *петрогенных элементов* (силикатный анализ), S, Cl приведена в мас.,%; п. п. п. – потери при прокаливании; концентрация *микроэлементов* приведена в г/т.

Таблица 2

Содержание редкоземельных элементов в магматических породах НТРУ

Химический		Порядковый номер												
элемент	7	8	9	16	17	18	21	22	27	29	32	34	35	37
Be	3,24	2,67	1,45	1,31	1,37	1,64	1,16	1,95	2,49	2,01	2,12	1,93	1,97	2,34
Sc	7,73	10,00	6,02	18,14	8,01	6,52	7,05	9,90	14,64	7,10	14,55	13,91	7,02	12,22
V	11,62	68,10	8,30	200,8	3,76	9,19	4,01	3,42	107,2	10,23	97,50	56,25	9,86	27,46
Co	0,58	2,10	0,46	16,43	<0,1	1,73	1,25	0,51	9,68	<0,1	10,43	8,57	0,31	4,47
Zn	67,03	131,1	73,82	118,5	41,34	50,63	55,41	112,2	91,67	60,80	104,3	110,6	17,19	74,87
Ga	20,07	23,28	16,51	21,22	15,29	17,01	14,99	16,27	22,78	22,47	19,39	21,05	18,92	21,19
Rb	140,4	174,8	153,9	139,7	157,0	137,5	106,3	150,4	185,1	165,0	184,1	165,4	203,8	181,3
Sr	142,6	519,3	114,5	539,3	37,34	112,5	51,88	133,5	555,8	296,4	609,3	484,1	281,2	376,4
Y	35,28	31,09	20,89	29,66	21,21	23,78	27,04	28,73	33,13	29,54	29,48	27,01	29,69	37,79
Zr	235,8	260,1	105,8	163,0	126,1	174,4	127,1	296,2	239,1	188,0	199,2	318,5	167,4	331,1
Nb	15,07	11,95	8,38	8,22	11,78	10,83	10,93	14,02	12,06	13,65	10,20	15,15	10,13	15,60
Мо	1,52	1,21	1,04	1,97	1,33	2,01	1,03	1,06	0,82	0,77	1,03	0,47	1,88	2,55
Sn	2,13	6,06	2,79	1,24	4,50	3,39	0,93	2,84	1,35	2,18	1,25	2,10	4,44	2,81
Cs	1,81	2,27	4,31	1,79	3,71	3,64	3,05	4,69	3,32	2,61	4,32	2,22	2,99	3,19

Химический	Порядковый номер													
элемент	7	8	9	16	17	18	21	22	27	29	32	34	35	37
Ba	860,4	854,9	601,4	428,5	712,9	840,4	785,4	934,4	692,9	611,4	650,9	787,9	966,9	1032
La	39,33	35,49	30,04	21,22	25,67	33,56	18,48	17,02	31,09	52,10	29,00	30,59	34,26	38,14
Ce	86,27	77,87	57,52	47,66	52,57	72,17	42,06	47,07	68,37	97,17	60,07	67,42	73,92	83,42
Pr	9,36	9,04	6,30	5,62	6,17	7,64	4,59	4,79	8,06	9,70	7,08	7,66	7,74	9,21
Nd	33,08	33,85	20,90	24,57	22,58	26,14	16,42	17,63	32,11	32,26	28,05	29,18	27,19	35,05
Sm	6,29	6,96	3,97	5,58	4,74	4,95	3,45	3,69	6,87	6,33	5,67	5,75	5,32	7,29
Eu	1,04	1,83	0,49	1,66	0,69	0,71	0,58	0,77	1,68	0,99	1,61	1,59	0,79	1,52
Gd	6,26	6,35	3,71	6,01	4,57	4,71	3,46	4,03	6,84	6,27	5,83	6,01	4,88	7,38
Tb	0,96	0,91	0,54	0,91	0,68	0,64	0,55	0,66	1,00	0,88	0,89	0,83	0,75	1,05
Dy	5,74	5,32	3,54	5,65	4,02	4,03	4,11	4,76	5,98	5,10	5,35	5,37	4,43	6,52
Но	1,16	1,06	0,76	1,10	0,87	0,86	0,92	1,11	1,23	1,03	1,08	0,99	0,91	1,36
Er	3,77	3,28	2,33	3,41	2,63	2,63	3,00	3,49	3,62	3,02	3,17	2,92	2,88	3,99
Tm	0,58	0,51	0,36	0,47	0,36	0,41	0,45	0,55	0,52	0,47	0,44	0,42	0,46	0,62
Yb	3,87	3,31	2,48	3,11	2,50	2,84	3,10	3,35	3,48	3,02	2,86	2,68	3,33	4,07
Lu	0,58	0,48	0,38	0,45	0,38	0,40	0,45	0,56	0,47	0,49	0,42	0,41	0,51	0,59
Hf	6,70	6,05	3,46	4,01	4,42	5,09	3,99	7,68	5,84	5,19	4,99	7,18	4,84	8,44
Та	1,13	0,88	0,94	0,48	0,90	0,95	0,86	1,29	0,79	1,19	0,65	0,90	1,01	1,20
W	7,59	3,96	10,51	5,40	6,48	5,77	4,61	8,08	5,30	6,16	5,18	4,28	6,10	10,33
Pb	24,42	17,91	36,19	13,91	17,60	20,36	19,97	39,05	16,28	65,20	28,19	11,07	10,11	86,95
Th	21,46	12,33	19,04	5,47	12,36	16,53	13,78	15,89	10,67	19,21	9,18	11,60	19,16	20,56
U	3,13	2,39	3,17	0,92	3,02	2,64	2,35	3,22	2,08	3,13	1,71	2,15	3,96	4,79

Окончание табл. 2

Примечание. 7, 8, 9, 16, 17 – приморский вулканический комплекс; 18–22 – самаргинский комплекс; 24–36 – богопольский комплекс; 37–39 – кизинский комплекс. Анализ редкоземельных элементов выполнен в ЦКП ДВГИ ДВО РАН методом масс-спектрометрии с индуктивно связанной плазмой на спектрометре Agilent 7500 с (Agilent Technologies, США) (аналитик Блохин М. Г.). Пробоподготовка – сплавление с метаборатом лития (аналитик Левчук Л. С.).

риолитов (рис. 2). По концентрации химических элементов, нормированных к среднему составу верхней коры [8], они соответствуют магматическим породам окраинно-континентального типа. Характерно распределение содержания редких земель в виде пологой кривой, возрастающей от лантана к лютецию с европиевым минимумом (рис. 3, *a*). В эффузивах комплекса относительно кларкового содержания отмечается повышенная концентрация вольфрама, свинца и цинка.

Самаргинский комплекс включает вулканогенную толщу и сопряженные с ней экструзивы андезитов, андезито-дацитов и дацитов. Толща сложена разнообразными по структуре туфами риолито-дацитового, дацитового, реже андезитового состава. Встречаются также туффиты, туфоалевролиты, туфопесчаники. При значительной фациальной изменчивости пород отличается наличие в низах разреза грубообломочных туфов и ксенотуфов, а в верхах – покровов андезитов, ассоциированных с экструзивами. Общая мощность отложений составляет более 500 м.

Породы вулканогенной толщи подверглись интенсивной метасоматической переработке.

Площадные изменения контролируются эруптивными аппаратами и некками дацитов, сериями сближенных разрывов. Широкое развитие получило кварц-серицитовое замещение пород вплоть до образования вторичных кварцитов, а также аргиллизация и пропилитизация.

Экструзивные образования распространены в основном в пределах Носыревской и Шандуйской кальдер. Размер некков и экструзивных куполов редко превышает 0,2–0,3 км². Наряду с телами однородного сложения наблюдаются экструзивы и некки, сформированные в результате многократного внедрения. По составу и условиям формирования они разделяются на две группы: ранние – кислого и умеренно-кислого состава (сферолитовые, флюидально-сферолитовые риолиты, риодациты, брекчиевые лавы и ксенотуфы) и поздние – среднего состава (андезиты, андезидациты).

Химический состав вулканитов самаргинского комплекса приведен в табл. 1, 2. По соотношению кремнезема и калия они относятся к высококалиевой серии. Комплекс отличается слабовыраженным европиевым минимумом,

Рис. 2. Положение вулканических комплексов НТРУ на классификационной диаграмме (Na₂O+K₂O)-SiO₂: *1* – приморский комплекс; *2* – самаргинский комплекс; *3* – богопольский комплекс; *4* – кизинский комплекс; *5* – контур распространения пород богопольского комплекса в Таухинском террейне, по А. В. Гребенникову [9]

крутым наклоном кривой от лантала к европию и снижением содержания тяжелых элементов от гадолиния к лютецию (рис. 3, δ).

Представителями палеогенового магматизма на площади рудного узла являются вулканогенные образования богопольского комплекса, участвующие в строении Тальниковой и Шандуйской кальдер. По литолого-петрографическим признакам стратифицированные накопления комплекса разделяются на три пачки [7].

Первая (нижняя) пачка сложена туфами и туфоконгломератами риолитов, содержащими окатанные глыбы дацитов и гранитов, также отмечаются прослои туфоалевролитов. Пачка расположена вдоль границы упомянутых кальдер. Мощность пачки 225–250 м.

Во второй (средней) пачке доминирующую роль играют игнимбриты, в разной степени спекшиеся, и сваренные игнимбритовидные туфы. Метасоматическому изменению породы пачки подверглись слабо, из наиболее часто встречающихся это кварц-серицитовое замещение, редко карбонатизация. Околотрещинные изменения выражаются в окварцевании, гидрослюдизации и сульфидизации пород. Мощность пачки колеблется от 250 до 650 м.

Третья (верхняя) пачка распространена в центральной части Шандуйской кальдеры. Она имеет с нижележащими образованиями тектонический контакт и слагает внутреннюю часть кальдеры.

Рис. 3. Распределение редкоземельных элементов в вулканогенных породах Нижне-Таежного рудного узла (*a* – приморский комплекс; *δ* – самаргинский комплекс; *s* – богопольский комплекс; *c* – кизинский комплекс) и Тернейской вулканоструктуры [2]: *l* – Нижне-Таежный рудный узел; *2* – Тернейская вулканоструктура

Характеризуется наличием типичных туфогенноосадочных пород и туфов. В низах пачки отмечаются прослои туфов риолитов, а также игнимбритов и игнимбритовидных туфов риолитов. Среднюю ее часть слагают массивные пелитовые туффиты. Мощность пачки более 500 м.

Изверженные вулканические образования богопольского комплекса зафиксированы в Шандуйской и Носыревской кальдерах. Представлены они дацитами, трахидацитами и андезито-дацитами [10]. Дайки имеют субширотное простирание и в основном сложены риолитами и гранитами протяженностью до 2 км. Вулканические тела среднего состава представлены дайками андезитов.

Химический состав пород богопольского вулканического комплекса приведен в табл. 1, 2. На классификационной диаграмме (Na₂O+K₂O) – SiO₂ вулканиты комплекса попадают в поля андезитов, дацитов, трахидацитов и риолитов (см. рис. 2). По соотношению калия и кремнезема они принадлежат к высококалиевым разностям, а по распределению редкоземельных элементов имеют схожий трендовый облик с аналогами опубликованных данных [2], отличаясь только уровнем концентрации (рис. 3, ϵ).

Из работы А. А. Гребенникова [9] [диаграмма FeO_{tot}/(FeO_{tot}+MgO) – SiO₂] следует, что гиалоигнимбриты и спекшиеся туфы богопольского комплекса являются железистыми. Согласно нашим данным, они занимают пограничное положение, частично попадая в поле развития железистых, а частично и магнезиальных разностей.

Миоценовые вулканические образования, отнесенные в [7] к кизинскому вулканическому комплексу, распространены в восточной части НТРУ и представлены телами дацитового состава с секущими их дайками андезитов, которые образуют купольные структуры. Пространство между ними заполнено вулканокластическими брекчиями диоритов, риолитов и гранитов.

По петрохимическим характеристикам (см. табл. 1, 2) породы комплекса соответствуют трахидацитам, дацитам и риолитам (см. рис. 2) и относятся к высококалиевым разностям. На графиках нормированного распределения редкоземельных элементов они характеризуются слабовыраженным европиевым минимумом (рис. 3, г). На графике некогерентных элементов, нормированных по составу к верхней коре [2], отчетливо наблюдается минимум титана и максимум калия.

Заключение

Геолого-геохимические исследования, посвященные вулканическим комплексам Нижне-Таежного рудного узла, существенно дополняют литолого-петрографическое изучение вулканитов [7]. В пределах узла распространены разновозрастные магматические образования, причисляемые к приморскому (турон-сенон), самаргинскому (маастрихт), богопольскому (палеоцен) и кизинскому (миоцен) вулканическим комплексам. Сопоставление химического состава пород вулканических комплексов с опубликованными данными свидетельствует о значительном сходстве с петротипами Тернейской вулканоструктуры [2]. Комплексы рудного узла сложены высококаливевыми разностями пород и различаются содержанием редких и редкоземельных элементов. Так, распределение некогерентных элементов в вулканитах приморского комплекса характеризуется повышенной концентрацией вольфрама, цинка, свинца, тория, лантана, церия, низким содержанием ниобия, стронция, циркония и титана. Самаргинский комплекс характеризуется низким содержанием титана, стронция и высокой концентрацией неодима. Богопольский и кизинский комплексы имеют схожий трендовый облик с петротипами по распределению редких и рассеянных элементов, но отличаются уровнем их концентрации. На графиках распределения редкоземельных элементов (см. рис. 3) породы комплексов отличаются крутым наклоном кривой от лантана к европию, выполаживанием в области тяжелых элементов от гадолиния к лютецию и слабовыраженным европиевым минимумом.

Библиографический список

1. Михайлов В. А. Магматизм вулкано-тектонических структур южной части Восточно-Сихотэ-Алиньского вулканического пояса. Владивосток : ДВО РАН СССР, 1989. 172 с.

2. *Ханчук А. И.* Геодинамика, магматизм и металлогения Востока России : в 2 кн. Владивосток : Дальнаука, 2006. Кн.1. 572 с.

3. Ханчук А. И. Тектоника и магматизм палеотрансформных континентальных окраин калифорнийского типа на Востоке России // Общие вопросы тектоники. Тектоника России : материалы XXXIII тектон. совещ. М. : ГЕОС, 2000. С. 544–547.

4. Сахно В. Г. Позднемезозойско-кайнозойский континентальный вулканизм Востока Азии. Владивосток : Дальнаука, 2001. 338 с.

5. Уткин В. П. Горст-аккреционные системы, рифтограбены и вулкано-плутонические пояса юга Дальнего Востока России. Ст. 3. Геодинамические модели синхронного формирования горст-аккреционных систем и рифто-грабенов // Тихоокеанская геология. 1999. Т. 18, № 6. С. 35–58.

6. Ивин В. В., Родионов А. Н., Хомич В. Г., Симаненко Л. Ф., Борискина Н. Г. Геологическое строение и типы эндогенной минерализации Нижне-Таежного рудного узла (Приморье) // Тихоокеанская геология. 2006. Т. 25, № 3. С. 81–87.

7. *Королев В. Н.* Геологическое строение и полезные ископаемые бассейна среднего течения р. Белембе и руч. Березового. Владивосток : Приморские территориальные геологические фонды, 1973. 201 с.

8. *Kemp A. I. S., Hawkesworth C. J.* Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust // Treatise on Geochemistry / Eds. H. D. Holland, K. K. Turekian. Amsterdam : Elsevier, 2004. P. 349–410.

9. Гребенников А. В., Попов В. К., Ханчук А. И. Опыт петрохимической типизации кислых вулканических пород

Образец для цитирования:

различных геодинамических обстановок // Тихоокеанская геология. 2013. Т. 32, № 3. С. 68–73.

10. Родинов А. Н., Леликов Ю. Р., Иголкина Г. Г. Результаты поисково-картировочных работ на серебро на участке Белембе (Отчет Приморской партии за 1989–1993 гг.). Владивосток : Приморские территориальные геологические фонды, 1993. 255 с.

Ивин В. В., Медведев Е. И., Фатьянов И. И. Геолого-геохимические особенности вулканических комплексов Нижне-Таежного рудного узла (Северное Приморье) // Изв. Сарат. ун-та. Нов. сер. Сер. Науки о Земле. 2019. Т. 19, вып. 3. С. 182–190. DOI: https://doi.org/10.18500/1819-7663-2019-19-3-182-190

Cite this article as:

Ivin V. V., Medvedev E. I., Fat'yanov I. I. Geological and Geochemical Features of the Volcanic Complexes of the Lower-Taiga Area (Northern Primorie). *Izv. Saratov Univ. (N. S.), Ser. Earth Sciences,* 2019, vol. 19, iss. 3, pp. 182–190 (in Russian). DOI: https://doi.org/10.18500/1819-7663-2019-19-3-182-190