Cite this article as:

Senchina N. P., Mingaleva T. A. Multi-feature petrophysical classification of rocks as a basis for interpretation of geophysical data. Izvestiya of Saratov University. Earth Sciences, 2022, vol. 22, iss. 3, pp. 208-218. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Multi-feature petrophysical classification of rocks as a basis for interpretation of geophysical data


The work is carried out approbation of the algorithm for the complex interpretation of geophysical data using data classification algorithm. Distributions by class are obtained and compared with petrophysical materials from published sources. This data is compared and geological composition of the studied area is obtained. The applicability of this approach for the integrated interpretation of geophysical data is shown, including low-level studied areas with a complex geological structure.

  1. Голиздра Г. Я. О комплексировании гравитационного и сейсмического методов // Известия РАН. Серия «Физика Земли». 1978. № 6. С. 26–38.
  2. Спичак В. В., Безрук И. А., Гойдина А. Г. Построение трехмерных кластерных петрофизических моделей геологической среды по совокупности геофизических данных, измеренных на опорных профилях // Разведка и охрана земных недр. 2015. № 4. С. 41–45.
  3. Kotyrba B., Schmidt V. Combination of seismic and resistivity tomography for the detection of abandoned mine workings in Münster / Westfalen, Germany : Improved data interpretation by cluster analysis // Near Surface Geophysics. 2014. Vol. 12. P. 415–426.
  4. Спичак В. В. Современные подходы к комплексной инверсии геофизических данных // Геофизика. 2009. № 5. С. 10–19.
  5. Colombo D., Stefano M. De Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data : Application to prestack depth imaging // The Leading Edge. Vol. 26. P. 326–331.
  6. Glazunov V. V., Shtengel V. G., Nedyalkov V. S., Efimova N. N., Danilev S. M. Combined Investigation by Thermal Imaging and Georadar Scanning for Voids Detection under Reinforced Concrete Slabs of Fastening Soil Slopes of Hydraulic Structures // Engineering and Mining Geophysics 2018. Apr 2018. Vol. 20, Almaty, Kazakhstan : European Association of Geoscientists & Engineers. P. 1–11.
  7. Никитин А. А., Булычев А. А. Комплексный анализ и комплексная интерпретация геофизических полей : учебное пособие. Москва : ВНИИгеосистем, 2015. 94 с.
  8. Lelièvre P. G., Farquharson C. G. Integrated Imaging for Mineral Exploration. Integrated Imaging of the Earth : Theory and Applications, Geophysical Monograph 218, First Edition. Hoboken : American Geophysical Union, 2016. 215 p.
  9. Molodtsov D. M., Troyan V. N.. Multi-physics joint inversion through joint sparsity regularization // SEG International Exposition and 87th Annual Meeting, Houston : Society of Exploration Geophysicists, 2017. P. 1262–1267.
  10. Moorkamp M., Jones A. G., Fishwick S. Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data // Geophysical Research Letters. 2010. Vol. 115, P. 1–23.
  11. Спичак B. B., Безрук И. А., Попова И. В. Построение глубинных кластерных петрофизических разрезов по геофизическим данным и прогноз нефтегазоносности территорий // Геофизика. 2008. № 5. С. 43–45.
  12. Abubakar A., Gao G., Habashy T. M., Liu J. Joint inversion approaches for geophysical electromagnetic and elastic full-waveform data // Inverse Problems. 2012. Vol. 28. P. 055016.
  13. Hu W., Abubakar A., Habashy T. M.. Joint electromagnetic and seismic inversion using structural constraints // Geophysics. 2009. Vol. 74, № 6. R99–R109.
  14. Golizdra G. Y. Statement of the problem of comprehensive interpretation of gravity fields and seismic observations // Izvestiya, Physics of the Solid Earth. 1980. Vol. 16. P. 535–539.
  15. Haber E., Oldenburg D. Joint inversion : A structural approach. UBC-Geophysical Inversion Facility, Department of Geophysics. Vancouver, Canada : University of British Columbia, 1997. Vol. 13. P. 63–77.
  16. Giuseppe M. G. Di, Troiano A., Patella D., Piochi M., Carlino S. A geophysical k-means cluster analysis of the Solfatara-Pisciarelli volcano-geothermal system, Campi Flegrei (Naples, Italy) // Journal of Applied Geophysics. 2018. Vol. 156. P. 44–54.
  17. Guliyev H., Aghayev Kh. B., Guliyev I. S. Application of cluster analysis in the study of the petrophysical properties of the medium // International Conference on Geoinformatics. Theoretical and Applied Aspects. Kiev : European Association of Geoscientists and Engineers, 2013. 315 p.
  18. Klose C. D. Self-organizing maps for geoscientific data analysis : Geological interpretation of multidimensional geophysical data // Computers and Geosciences. 2006. Vol. 10. P. 265–277.
  19. Дортман Н. Б. Петрофизика : справочник. В трех книгах. Кн. первая. Горные породы и полезные ископаемые. Москва : Недра, 1992. 391 с.
  20. Bosch М. Lithologic tomography : From plural geophysical data to lithology estimation // Journal of Geophysical Research. 1999. Vol. 104 (B1). P. 749–766.
  21. Никитин А. А., Петров А. В. Теоретические основы обработки геофизических данных. Москва : РГГУ, 2008. 112 с.
Full text (in Russian):