Cite this article as:

Bogdanov M. B., Chervyakov M. Y. Estimation of Impulse Response of Earth’s Climate System at Century Time Interval. Izvestiya of Saratov University. New series. Series: Earth Sciences, 2020, vol. 20, iss. 4, pp. 226-233. DOI: https://doi.org/10.18500/1819-7663-2020-20-4-226-233


Heading: 
UDC: 
551.58
Language: 
Russian

Estimation of Impulse Response of Earth’s Climate System at Century Time Interval

Abstract

The Earth’s climate system (ECS) is considered as a linear system whose input is the change in the solar constant, and whose output is the global mean near-surface temperature anomaly. As a result of the restoration of the impulse response at century time interval using reconstructed data on the solar constant and global temperature it was shown that its time constant is 32 ± 14 years. The sensitivity of the ECS to radiative forcing is 1.31 ± 0.63 K·W-1·m2, and the positive feedback coefficient is 4.4 ± 2.1. The found values of the characteristics of the ECS do not contradict the data obtained by averaging over the ensemble of CMIP5 models.

References
  1. Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / eds. T. F. Stocker [et al.]. Cambridge : Cambridge Univ. Press, 2013. 1535 p.
  2. Дымников В. П., Лыкосов В. Н., Володин Е. М. Моделирование климата и его изменений : современные проблемы // Вестник РАН. 2012. Т. 82, № 3. С. 227–336.
  3. Douglass D. H., Clader B. D., Knox R. S. Climate sensitivity of Earth to solar irradiance : update // Paper presented at 2004 solar radiation and climate (SORCE) meeting on decade variability in the Sun and the climate, Meredith, New Hampshire, 27–29 October 2004. P. 1–16 [Электронный ресурс]. URL: http://arxiv.org/abs/physics/0411002 (дата обращения: 05.03.2020).
  4. Lockwood M. Recent changes in solar outputs and the global mean surface temperature. III. Analysis of contributions to global mean air surface temperature rise // Proceedings of the Royal Society A. 2008. Vol. 464. P. 1387–1404.
  5. Bogdanov M. B., Efremova T. Yu., Katrushchenko A. V. Estimation of impulse response of Earth’s climate system at short time intervals // Journal of Atmospheric and SolarTerrestrial Physics. 2012. Vol. 86. P. 51–55.
  6. Богданов М. Б., Червяков М. Ю. Оценка времени реакции и чувствительности земной климатической системы к радиационному воздействию // Изв. Сарат. ун-та. Нов. сер. Сер. Науки о Земле. 2019. Т. 19, вып. 4. С. 216–223. DOI: https://doi.org/10.18500/1819-7663-2019-19-4-216-223
  7. Schwartz S. E. Heat capacity, time constant, and sensitivity of Earth’s climate system // Journal of Geophysical Research. 2007. Vol. 112. D24S05. DOI: https://doi.org/10.1029/2007JD008746
  8. Schwartz S. E. Reply to comments by G. Foster et al., R. Knutti et al., and N. Scafetta on ‘‘Heat capacity, time constant, and sensitivity of Earth’s climate system’’ // Journal of Geophysical Research. 2008. Vol. 113. D15105. DOI: https://doi.org/10.1029/2008JD009872
  9. Scafetta N. Comment on ‘‘Heat capacity, time constant, and sensitivity of Earth’s climate system’’ by S. E. Schwartz // Journal of Geophysical Research. 2008. Vol. 113. D15104. DOI: https://doi.org/10.1029/2007JD009586
  10. Scafetta N. Empirical analysis of the solar contribution to global mean air surface temperature change // Journal of Atmospheric and Solar-Terrestrial Physics. 2009. Vol. 71. P. 1916–1923.
  11. Мохов И. И., Безверхний В. А., Елисеев А. В., Карпенко А. А. Взаимосвязь изменений глобальной приповерхностной температуры с изменениями солнечной активности по данным наблюдений и реконструкций для XVII–XX веков и по модельным расчетам // Доклады РАН. 2006. Т. 409, № 1. С. 115–119.
  12. Мохов И. И., Смирнов Д. А. Диагностика причинноследственной связи солнечной активности и изменений глобальной приповерхностной температуры Земли // Известия РАН. Физика атмосферы и океана. 2008. Т. 44, № 3. С. 283–293.
  13. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М. : Наука, 1979. 142 с.
  14. Тихонов А. Н., Гончарский А. В., Степанов В. В., Ягола А. Г. Регуляризирующие алгоритмы и априорная информация. М. : Наука, 1983. 200 с.
  15. Гончарский А. В., Черепащук А. М., Ягола А. Г. Некорректные задачи астрофизики. М. : Наука, 1985. 352 с.
  16. Lean J. Evolution of the Sun’s spectral irradiance since the Maunder minimum // Geophysical Research Letters. 2000. Vol. 27. P. 2425–2428.
  17. Lean J. Solar irradiance reconstruction // IGBP Pages. World Data Center for Paleoclimatology. Data Contribution Series. NOAA/NGDC Paleoclimatology Program. Boulder, CO, USA. 2004. № 2004-035. P. 1–12.
  18. Krivova N. A., Vieira L. E. A., Solanki S. K. Reconstruction of solar spectral irradiance since the Maunder minimum // Journal of Geophysical Research. 2010. Vol. 115. A12112. DOI: https://doi.org/10.1029/2010JA015431
  19. Yeo K. L., Krivova N. A., Solanki S. K. Solar cycle variation in solar irradiance // Space Science Reviews. 2014. Vol. 186. P. 137–167. DOI: https://doi.org/10.1007/s11214-014-0061-7.
  20. Egorova T., Schmutz W., Rozanov E., Shapiro A. I., Usoskin I., Beer J., Tagirov R. V., Peter T. Revised historical solar irradiance forcing // Astronomy and Astrophysics. 2018. Vol. 615. A85. P. 101–116. DOI: https://doi.org/10.1051/0004-6361/201731199
  21. Mann M. E., Zhang Z., Hughes M. K., Bradley R. S., Miller S. K., Rutherford S., Ni F. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia // Proceedings of the National Academy of Sciences. 2008. Vol. 105. P. 13252–13257. DOI: https://doi.org/10.1073/pnas.0805721105
  22. Hansen J., Sato M., Russell G., Kharecha P. Climate sensitivity, sea level, and atmospheric carbon dioxide // Philosophical Transactions of the Royal Society. 2013. Vol. 371. P. 234–245. DOI: https://doi.org/10.1098/rsta.2012.0294
Full text (in Russian):