Cite this article as:

Bogdanov M. B., Chervyakov M. Y. Estimation of frequency response of the global temperature to change in radiative forcing. Izvestiya of Saratov University. Earth Sciences, 2022, vol. 22, iss. 2, pp. 83-87. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Estimation of frequency response of the global temperature to change in radiative forcing


The Earth’s climate system (ECS) is considered as a linear system whose input is a change in the solar constant ΔI( t) and the output is an anomaly of the globally averaged surface temperature ΔT( t). The system input can be affected by other factors, and at the output their own temperature fluctuations and a random noise manifest themselves. All these factors are assumed to be independent of ΔI( t). The spectral analysis of monthly mean values of ΔI( t) and ΔT( t) shows the existence of statistically significant coherence. The amplitude-frequency response A( f) of the ECS is different from zero up to the Nyquist’s frequency 0.5 month−1 . The results are consistent with the previously obtained estimate of the equivalent time constant of the ESC 1.31 ± 0.03 month.

  1. Библиографический список 1. Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / eds. T. F. Stocker [et al.]. Cambridge : Cambridge University Press, 2013. 1535 p.
  2. Дымников В. П., Лыкосов В. Н., Володин Е. М. Моделирование климата и его изменений : современные проблемы // Вестник РАН. 2012. Т. 82, № 3. С. 227–336.
  3. Vardavas I. M., Taylor F. W. Radiation and Climate. New York : Oxford University Press, 2007. 492 p.
  4. Bogdanov M. B., Efremova T. Yu., Katrushchenko A. V. Estimation of impulse response of Earth’s climate system at short time intervals // Journal of Atmospheric and SolarTerrestrial Physics. 2012. Vol. 86. P. 51–55.
  5. Богданов М. Б., Червяков М. Ю. Оценка времени реакции и чувствительности земной климатической системы к радиационному воздействию // Известия Саратовского университета. Новая серия. Серия : Науки о Земле. 2019. Т. 19, вып. 4. С. 216–223.
  6. Богданов М. Б., Морозова С. В., Червяков М. Ю. Влияние факторов солнечной активности на земную климатическую систему. Саратов : Издательство Саратовского университета, 2021. 88 с.
  7. Бендат Дж. Применения корреляционного и спектрального анализа. Москва : Мир, 1983. 312 с.
  8. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения.Москва : Мир, 1972. Вып. 2. 288 с.
  9. Fröhlich C. Total solar irradiance : what have me learned from the last three cycles and the recent minimum? // Space Science Reviews. 2013. Vol. 176. P. 237–252.
  10. Zhang H.-M., Huang B., Lawrimore J., Menne M., Smith T. M. NOAA Global Surface Temperature Dataset (NOAAGlobalTemp), Version 4.0. NOAA National Centers for Environmental Information.  
  11. Vose R. S., Arndt D., Banzon V. F. NOAA’s merged landocean surface temperature analysis // Bulletin of the American Meteorological Society. 2012. Vol. 93. P. 1677–1685.
  12. Coakley J. A., Yang P. Atmospheric Radiation. Weinheim : Wiley-VCH, 2014. 255 p.
Full text (in Russian):